Measurement: Area of Parallelograms

Aim:
I can calculate the area of parallelograms
and triangles.
I can find the area of a parallelogram.

Success Criteria:
 I can find the area of a parallelogram by multiplying the length by the height.
 I can explain why the formula works for a parallelogram.
 I can solve problems involving calculating the area of parallelograms.

Key/New Words:

Area, parallelogram, length, height, rightangled triangle, formula.

Resources:

Lesson Pack

Preparation:

Differentiated Area of Parallelograms Activity Sheet - one per child

Prior Learning: It will be helpful if children can use a formula to calculate the area of rectangles.

Learning Sequence
Match the Area: Children calculate the area of triangles shown on the Lesson Presentation and match the

triangle to the correct area. | How to Calculate the Area of a Parallelogram: Use the Lesson Presentation to explain how to calculate the |
| :--- |
| area of a parallelogram, by multiplying the length by the height. Explain why this formula works. |

Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity.
These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section
and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are
applying this to show their depth of understanding.

Exploreit

Matchit: Children design a set of matching cards for the area of parallelograms. They swap cards with another pair. On squared paper, children draw and cut out squares and triangles. They rearrange the shapes to form another shape or object
Designit: (like a tangram). They then calculate the area of the whole shape.

Maths

Measurement

Area of Paranllelograms

Aim

I can find the area of a parallelogram.

Success Criteria

- I can find the area of a parallelogram by multiplying the length by the height.
- I can explain why the formula works for a parallelogram.
- I can solve problems involving calculating the area of parallelograms.

Match the Area

Match these triangles to their areas:

How to Calculate the Area of a Parallelogram

To calculate the area of a parallelogram, you need to multiply the length of the parallelogram by the height (not the sides).

Here is a parallelogram:

$$
9 \mathrm{~cm} \times 3 \mathrm{~cm}=27 \mathrm{~cm}
$$

The area of this parallelogram is $\mathbf{2 7} \mathbf{c m}^{2}$.

How to Calculate the Area of a Parallelogram

But why does this formula work when calculating the area of a parallelogram?

To calculate the area of a parallelogram, you need to multiply the length of the parallelogram by the height.

If we were to cut off a right angled-triangle from the end of the parallelogram...
and add it to the other end of the shape...
we would have a rectangle with the dimensions $3 \mathrm{~cm} \times$ 9 cm , so the area would be $27 \mathrm{~cm}^{2}$.

Find the Area of a Parallelogram

Find the area of these parallelograms:

Parallelogram Problem

Here are three parallelograms (not drawn to scale). Read each clue and work out which of the parallelograms is being described.

Clue	Parallelogram
This parallelogram has the greatest area.	B
This parallelogram is the only parallelogram which doesn't have a whole number area.	C
If both dimensions of this parallelogram were doubled, this parallelogram would have an area of $800 \mathrm{~cm}^{2}$.	A
The combined area of these 2 parallelograms is greater than $500 \mathrm{~cm}^{2}$, but less than $540 \mathrm{~cm}^{2}$.	B and C

Area of Parallelograms Activity

Use your wonderful skills to complete these activity sheets:

Calculate the Base or Height

Here is a parallelogram. You are given the height and the area. How can you work out the base of the parallelogram?

Let's put the information we know into a calculation:

To find out what number will fit into the missing box, we can do an inverse operation:
$128 \mathrm{~cm}^{2} \div 8=\square$
$128 \div 8=16$
base $=16 \mathrm{~cm}$
Let's check:
$16 \times 8=128$


```
Answer:
    base = 16 cm
```


Calculate the Base or Height

Here are 2 parallelograms. Calculate the base or the height of each.

Answer:
base $=15 \mathrm{~cm}$

18 cm
Answer:

$$
\text { height }=6 \mathrm{~cm}
$$

Aim

I can find the area of a parallelogram.

Success Criteria

- I can find the area of a parallelogram by multiplying the length by the height.
- I can explain why the formula works for a parallelogram.
- I can solve problems involving calculating the area of parallelograms.

Regent Studies| www.regentstudies.com

Aim: I can find the area of a parallelogram.

Date:

				Delivered By:			Support:		
Success Criteria	Me	Friend	Teacher	T	PPA	S	I	AL	GP
I can find the area of a parallelogram by multiplying the length by the height.				Notes/Evidence					
I can explain why the formula works for a parallelogram.									
I can solve problems involving calculating the area of parallelograms.									

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Area of Parallelograms

I can find the area of parallelograms.

Find the area of these parallelograms:

1.	2.
3.	4.
5.	6.

7.

8.

9. Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
10. Change one of the measurements of this parallelogram so that it has an area of $40 \mathrm{~cm}^{2}$.

Area of Parallelograms Answers

Question	Answer
1.	$28 \mathrm{~cm}^{2}$
2.	$30 \mathrm{~cm}^{2}$
3.	$63 \mathrm{~cm}^{2}$
4.	$6 \mathrm{~cm}^{2}$
5.	$60 \mathrm{~cm}^{2}$
6.	$96 \mathrm{~cm}^{2}$
7.	$90 \mathrm{~cm}^{2}$
8.	$128 \mathrm{~cm}^{2}$
9.	Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
	Explanation and drawings show an understanding that if you cut off a rightangled triangle from one side of the parallelogram and place it on the other side, you would have a rectangle and the area would be length x height.
10.	Change the one of the measurements of this parallelogram so that it has an area of $40 \mathrm{~cm}^{2}$.
	The new shape could be $4 \mathrm{~cm} \times 10 \mathrm{~cm}$ or $8 \mathrm{~cm} \times 5 \mathrm{~cm}$.

Area of Parallelograms

I can find the area of parallelograms.

Find the area of these parallelograms:

1.	2.
3.	4.
5.	6.

7.

8.

9. Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
10. Lena and Trishna have each drawn a parallelogram. Lena's parallelogram has a base of 18 cm and height 9 cm . Trishna's parallelogram has a base of 12 cm and height 11 cm .

My parallelogram has the greatest area. It is more than $25 \mathrm{~cm}^{2}$ bigger than Trishna's parallelogram.

Is Lena correct?

Area of Parallelograms Answers

Question	Answer
1.	$40 \mathrm{~cm}^{2}$
2.	$135 \mathrm{~cm}^{2}$
3.	$240 \mathrm{~cm}^{2}$
4.	$96 \mathrm{~cm}^{2}$
5.	$52 \mathrm{~cm}^{2}$
6.	$126 \mathrm{~cm}^{2}$
7.	$540 \mathrm{~cm}^{2}$
8.	$325 \mathrm{~cm}^{2}$
9.	Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
	Explanation and drawings show an understanding that if you cut off a rightangled triangle from one side of the parallelogram and place it on the other side, you would have a rectangle and the area would be length \times height.
10.	Lena and Trishna have each drawn a parallelogram. Lena's parallelogram has a base of 18 cm and height 9 cm . Trishna's parallelogram has a base of 12 cm and height 11 cm . Is Lena correct?
	Lena's parallelogram has an area of $162 \mathrm{~cm}^{2}$. Trishna's parallelogram has an area of $132 \mathrm{~cm}^{2}$. The difference between the areas of the two parallelograms is $30 \mathrm{~cm}^{2}$. This is greater than $25 \mathrm{~cm}^{2}$. Lena is correct.

Area of Parallelograms

I can find the area of parallelograms.

Find the area of these parallelograms:

7.

8.

9. Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
10. Katie says, "I have drawn a parallelogram which has a base of 12 cm and height 8 cm . If I doubled either the base or the height, the area would be double the area of my first parallelogram." Is Katie correct? Show how you know.

Area of Parallelograms Answers

Question	Answer
1.	$768 \mathrm{~cm}^{2}$
2.	$864 \mathrm{~cm}^{2}$
3.	$2881 \mathrm{~cm}^{2}$
4.	$1875 \mathrm{~cm}^{2}$
5.	$22.5 \mathrm{~cm}^{2}$
6.	$156 \mathrm{~cm}^{2}$
7.	$19.25 \mathrm{~cm}^{2}$
8.	$33.75 \mathrm{~cm}^{2}$
9.	Explain why the area of a parallelogram is the length of the base multiplied by the height. Draw a diagram to help your explanation.
	Explanation and drawings show an understanding that if you cut off a rightangled triangle from one side of the parallelogram and place it on the other side, you would have a rectangle and the area would be length \times height.
10.	Katie says 'I have drawn a parallelogram which has a base of 12 cm and height 8 cm . If I doubled either the base or the height, the area would be double the area of my first parallelogram.' Is Katie correct? Show how you know.
	Katie is correct. The original parallelogram has an area of $96 \mathrm{~cm}^{2}(12 \mathrm{~cm} \times 8 \mathrm{~cm})$. If you doubled the base, the area would be $24 \mathrm{~cm} \times 8 \mathrm{~cm}=192 \mathrm{~cm}^{2}$. If you doubled the height, the area would be $12 \mathrm{~cm} \times 16 \mathrm{~cm}=192 \mathrm{~cm}^{2}$. $192 \mathrm{~cm}^{2}$ is double $96 \mathrm{~cm}^{2}$.

1) a) $4 \times 2=8 \mathrm{~cm}^{2}$
b) $5 \times 3=15 \mathrm{~cm}^{2}$
2) a) $14 \mathrm{~cm} \times 6 \mathrm{~cm}=84 \mathrm{~cm}^{2}$
b) $7 \mathrm{~cm} \times 5 \mathrm{~cm}=35 \mathrm{~cm}^{2}$
3) a) 80 mm
b) 7 cm
4) Ania is incorrect. Using the formula base \times perpendicular height to calculate the area of both the rectangle and the parallelogram will show Ania that both shapes actually have the same area of $32 \mathrm{~cm}^{2}$.
5) No. Although Hamish has correctly calculated that the first parallelogram has an area of $42 \mathrm{~cm}^{2}$, in the second parallelogram he has multiplied the base by a side length, rather than the perpendicular height.
The correct area of the second parallelogram is $7 \mathrm{~cm} \times 5 \mathrm{~cm}=35 \mathrm{~cm}^{2}$ so both of these parallelograms do not have an area of $42 \mathrm{~cm}^{2}$.
6) The parallelogram has an area of $84 \mathrm{~cm}^{2}$ so it could have the following dimensions:
base $=b$ and height $=h$
$b=3 \mathrm{~cm}$ and $h=28 \mathrm{~cm}$
$b=4 \mathrm{~cm}$ and $h=21 \mathrm{~cm}$
$b=6 \mathrm{~cm}$ and $h=14 \mathrm{~cm}$
$b=7 \mathrm{~cm}$ and $h=12 \mathrm{~cm}$
a) Each tile has an area of $240 \mathrm{~cm}^{2}$.
$4800 \div 240=20$
DIY Dan needs 20 tiles for this wall.
b) $£ 175 \div £ 3.50=50$

Dan used 50 more tiles to decorate the rest of his bathroom.

Use the formula base \times height to calculate the area of a parallelogram.

1) Find the area of each parallelogram.

\qquad

\qquad
\qquad
\qquad
2) Calculate the area of each parallelogram.
a)

b)

\qquad
\qquad
\qquad
\qquad
3) Calculate the missing measurements for these parallelograms.
b)

a)

\qquad
\qquad

Use the formula base \times height to calculate the area of a parallelogram.

1) Ania has been counting squares to find the area of these shapes.

I think that the parallelogram has a larger area than the rectangle.

Is Ania correct? Explain to Ania how to check if she is correct by using a calculation.
\qquad
\qquad
2) Hamish has worked out that each parallelogram has an area of $42 \mathrm{~cm}^{2}$.

Do you agree with Hamish? Explain why.
\qquad
\qquad
\qquad
\qquad

Use the formula base \times height to calculate the area of a parallelogram.

1) I am thinking of a parallelogram with side lengths that are whole numbers.

It has an area of $84 \mathrm{~cm}^{2}$.
Its height measures between 10 cm and 30 cm .
Its base measures between 2 cm and 10 cm .

Give the dimensions of all the possible parallelograms I could be thinking of.
\qquad
\qquad
2) DIY Dan is decorating his bathroom with these tiles:

One wall of his bathroom has an area of $4800 \mathrm{~cm}^{2}$.

a) How many tiles will DIY Dan need to decorate this wall?

| | | | | | | | | | | | |
| :--- |

b) DIY Dan spends another $£ 175$ decorating the rest of his bathroom with tiles. How many more tiles did DIY Dan use?

| | | | | | | | | | | |
| :--- |

Use the formula base \times height to calculate the area of a parallelogram.

1) Find the area of each parallelogram.
a)

b)

2) Calculate the area of each parallelogram.
a)

b)

3) Calculate the missing measurements for these parallelograms.

Use the formula base \times height to calculate the area of a parallelogram.

1) Find the area of each parallelogram.
a)

b)

2) Calculate the area of each parallelogram.
a)

b)

3) Calculate the missing measurements for these parallelograms.

b)

Use the formula base \times height to calculate the area of a parallelogram.

1) Ania has been counting squares to find the area of these shapes.

I think that the

parallelogram has a larger area than the rectangle.

Is Ania correct? Explain to Ania how to check if she is correct by using a calculation.
2) Hamish has worked out that each parallelogram has an area of $42 \mathrm{~cm}^{2}$.

$14 \mathrm{~cm} \times 3 \mathrm{~cm}=42 \mathrm{~cm}^{2}$

Do you agree with Hamish? Explain why.

Use the formula base \times height to calculate the area of a parallelogram.

1) Ania has been counting squares to find the area of these shapes.

I think that the
parallelogram has a larger area than the rectangle.

Is Ania correct? Explain to Ania how to check if she is correct by using a calculation.
2) Hamish has worked out that each parallelogram has an area of $42 \mathrm{~cm}^{2}$.

$14 \mathrm{~cm} \times 3 \mathrm{~cm}=42 \mathrm{~cm}^{2}$

$7 \mathrm{~cm} \times 6 \mathrm{~cm}=42 \mathrm{~cm}^{2}$

Do you agree with Hamish? Explain why.

Use the formula base \times height to calculate the area of a parallelogram.

1) I am thinking of a parallelogram with side lengths that are whole numbers.

It has an area of $84 \mathrm{~cm}^{2}$.

Its height measures between 10 cm and 30 cm .

Its base measures between 2 cm and 10 cm .

between 2 cm and 10 cm

Give the dimensions of all the possible parallelograms I could be thinking of.
2) DIY Dan is decorating his bathroom with these tiles:

One wall of his bathroom has an area of $4800 \mathrm{~cm}^{2}$.
a) How many tiles will DIY Dan need to decorate this wall?
b) DIY Dan spends another $£ 175$ decorating the rest of his bathroom with tiles. How many more tiles did DIY Dan use?

Use the formula base \times height to calculate the area of a parallelogram.

1) I am thinking of a parallelogram with side lengths that are whole numbers.

Give the dimensions of all the possible parallelograms I could be thinking of.
2) DIY Dan is decorating his bathroom with these tiles:

One wall of his bathroom has an area of $4800 \mathrm{~cm}^{2}$.
a) How many tiles will DIY Dan need to decorate this wall?
b) DIY Dan spends another $£ 175$ decorating the rest of his bathroom with tiles. How many more tiles did DIY Dan use?

Find the Dimensions

I can find the area of parallelograms.

Calculate the area of each parallelogram, then give the possible dimensions of two other parallelograms which have the same area. You may use fractional measurements, for example 3.5 cm .
a) Shape 1

	Length	Height
Shape 2		
Shape 3		

b) Shape 1

	Length	Height
Shape 2		
Shape 3		

c) Shape 1

d) Shape 1

	Length	Height
Shape 2		
Shape 3		

Find the Dimensions Answers

a) Shape area $=24 \mathrm{~cm}^{2}$

Other 2 shapes have dimensions which give an area of $24 \mathrm{~cm}^{2}$ when multiplied together.
Allow half unit measurements, e.g. $1 \mathrm{~cm} \times 24 \mathrm{~cm}, 1.5 \mathrm{~cm} \times 16 \mathrm{~cm}, 2 \mathrm{~cm} \times 12 \mathrm{~cm}, 4 \mathrm{~cm} \times 6 \mathrm{~cm}$.
b) Shape area $=70 \mathrm{~cm}^{2}$

Other 2 shapes have dimensions which give an area of $70 \mathrm{~cm}^{2}$ when multiplied together. Allow half unit measurements, $1 \mathrm{~cm} \times 70 \mathrm{~cm}, 2 \mathrm{~cm} \times 35 \mathrm{~cm}, 2.5 \mathrm{~cm} \times 28 \mathrm{~cm}, 5 \mathrm{~cm} \times 14 \mathrm{~cm}, 3.5 \mathrm{~cm} \times 20 \mathrm{~cm}$.
c) Shape area $=25 \mathrm{~cm}^{2}$

Other 2 shapes have dimensions which give an area of $25 \mathrm{~cm}^{2}$ when multiplied together.
Allow half unit measurements, $1 \mathrm{~cm} \times 25 \mathrm{~cm}, 2 \mathrm{~cm} \times 12.5 \mathrm{~cm}, 2.5 \mathrm{~cm} \times 10 \mathrm{~cm}$.
d) Shape area $=48 \mathrm{~cm}^{2}$

Other 2 shapes have dimensions which give an area of $48 \mathrm{~cm}^{2}$ when multiplied together. Allow half unit measurements, $1 \mathrm{~cm} \times 48 \mathrm{~cm}, 1.5 \mathrm{~cm} \times 32 \mathrm{~cm}, 2 \mathrm{~cm} \times 24 \mathrm{~cm}, 3 \mathrm{~cm} \times 16 \mathrm{~cm}, 6 \mathrm{~cm} \times 8 \mathrm{~cm}$.

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

Measurement | Area of Parallelograms

I can find the area of a parallelogram.		
I can find the area of a parallelogram by multiplying the length by the height.		
I can explain why the formula works for a parallelogram.		
I can solve problems involving calculating the area of parallelograms.		

